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The methods of nonequilibrium thermodynamics are used to establish
a relation between the gradients of thermodynamic quantities in the
quasi-steady state of a system of two gas volumes joined hy a cap-
ilary.

We shall examine two volumes containing a binary
gas mixture joined by a capillary. If at time zero
the temperature, concentration, and pressure in the
two volumes are different, then in the course of a
sufficient time interval an adiabatic closed system
of this kind will reach a state of thermodynamic
equilibrium, characterized by maximum entropy
and uniformity of all the thermodynamic parameters
defining the state of the system.
It is not difficult to evaluate the relaxation time
for each parameter by putting the remainder constant,
From the balance equations we obtain
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It may be seen from (1) that 1, =~ rp, while for the
ratio Tp/TC, we have

T/t = 8MD/Pr3 .
For ry = 0,01 cm and normal conditions we obtain
Tp/te = 1075

This means that under the conditions indicated
in the system, the pressure is firstly established
for practically unchanged concentration and tem~
perature in the volumes of the system. A state of
this kind is quasi-steady, or, according to the
terminology of irreversible process thermodynamics,
a steady state of the second order {1}].

To find the connection between the thermodynamic
parameter gradients in such a "steady" state, we
use the methods of irreversible process thermo-
dyaamics.

The rate of entropy increase in an adiabatically
closed enclosed system [2] is
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The last integral in (2) may be transformed as
follows:
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By transforming the first integral with respect
to volume on the right of (3) into an integral over
the motionless surface bounding the system, we
may verify that it is equal to zero, if we neglect
slip.

From the law of conservation of momentum,
neglecting the convective term, we have [2]
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Substituting (4) and (3) into (2), we obtain
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On the basis of (5) we may write the linear phenom-
enological relations
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We shall make the following linear transformation
of the fluxes and the corresponding transformation of
forces:
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The flux and force {ransform matrices are
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a = {(my — my)/mymy; b= (1 —acm).

The transformations (7) and (8) give J], the total
molecular flux density, and J,, the flux density of one
of the components in the fixed coordinate system.

The steady state of second order being examined
is characterized by absence of over-all flux of
molecules from one volume to the other, i.e,,
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Setting Xj = X;i = 0 and using the Onsager rela-
tions, we obtain
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Reverting to the former forces and fluxes, we
obtain
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The ratios of fluxes in (11) must be taken under
the condition
Xe=X;=0 or ayP -nyu y7T =0. 12)

Under the above conditions, for an incompressible
fluid, we have [2]
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where 7 is some mean viscosity of the mixture.
From similar considerations we obtain, under
conditions (12},
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The calculations of o' v under conditions (12) is
somewhat more complicated. If we understand v in
the expression for @'v to be the mean velocity over
the section of the capillary for an incompressible
fluid, we may write
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Allowing for dissipation of kinetic energy during
viscous flow of the gas in the capillary, and averaging
over the section, we obtain
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Substituting v, = —1/47(r} — r¥)(AP), into (16) and
integrating, we have
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From (17), (15), {14), (13), and (11), under con-
ditions (12), it follows that
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Equation (18) gives the relation between gradients
of the thermodynamic quantities which describe the
system in the quasi-steady state under examination.

Let us examine the isothermal case, i.e., we
shall assume that the two volumes contain a mixture
of gases at different concentrations but at identical
temperature, It then follows from (18) that
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Transferring to molar concentrations C and
neglecting the pressure diffusion term, we obtain,
after integration with respect to concentration,
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Designations I and II refer to the different vol-
umes, and C is the molar concentration of the first
gas. If there are originally pure gases in the vol-
umes, we arrive at the well-known expression [3,
4]
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Equation (21) shows that during time rtp a pressure
drop is established in the system, even if the pres-
sures in the two volumes were the same at time
zero. Then the fluxes of individual components from
one volume to the other after elapsed time 7¢ will
be equal neither in concentration nor in pressure.
This phenomenon has been studied experimentally
in [4, 5] under the name of baroeffect, in mutual
diffusion of gases. If slip of the gas at the capillary
wall is not allowed for, then the experimental re-
sults are described satisfactorily by (21).

Let us examine a second case, when the two
volumes contain the same gas at different temper-
atures; then from (18) we have

VP T— 832 R/rgMP. (22)

Equation (22) gives the thermomolecular pressure
difference for small Knudsen numbers. If energy
dissipation through viscosity is not taken into con-
sideration, the thermodynamics of irreversible
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processes would indicate that there is no thermo-
molecular pressure difference at low Knudsen num-
bers. The thorough tests of Knudsen [6] were devoted
to an experimental study of thermomolecular pres-
sure difference. His theoretical formula, obtained
by the Maxwell method, gave resulis at increased
pressures differing from experimental values by
more than a factor of two, although agreement was
good in the molecular flow regime, Knudsen gives
an experimental coefficient of 7.75 instead of 8 in
{22), and in a later work 8.31 instead of 8. Since

ne assigned great weight to the data at intermediate
pressure in reducing the experimental results, it
must be assumed that (22) gives a sufficiently good
description of Knudsen's experimental results.

A similar formula with coefficient 12,2 was ob-
tained by Deryagin and Bakanov [7] by methods of
irreversible process thermodynamics, and including
the third-order approximation of the Champman
and Cowling kinetic theory in calculating heat trans-
fer.

In more complex cases, when there are gases with
different concentrations and different temperatures
in the two volumes, the pressure difference that
develops may also be obtained from (22).

NOTATION

P, T, Tr-—Telaxation times for pressure, concentration, and
temperature; V—oiie of the volumes of the system; 7, ry—length and
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radius of capillary; 0, D, x—coefficients of viscosiry and mutual
diffusion, and thermnal diffusivity; S, p—entropy and chemical po-
tential of unit mass of gas mixture; q, i~-heat and diffusion flux
densities; p—mixture density; T —absolute temperature; O'jg—viscous
siress tensor; v-—-mixture mass velocity; kp, kp—pressure diffusion
and thermal diffusion ratio; m;, m, —masses of molecules of system;
R~gas constant; M —~molecular weight; C, C'—molar and weight
concentrations, Subscripts i, k for the tensors are coordinates, and
for the matrices—numpers of rows and columns.
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